Sun, ocean, climate and atmospheric 14CO2 : an evaluation of causal and spectral relationships
- 1 December 1993
- journal article
- research article
- Published by SAGE Publications in The Holocene
- Vol. 3 (4), 289-305
- https://doi.org/10.1177/095968369300300401
Abstract
Solar (heliomagnetic), geomagnetic and oceanic forcing all play a role in atmospheric 14CO2 change. Here we assign the variance associated with certain periodicities in a single year (0-450 cal. BP) and a Holocene bidecadal (0-11400 cal. BP) 14CO2 record to specific forcing factors. In the single-year time series the variance in the 2-6-year periodicity range is attributable to El Niño-Southern Oscillation (ENSO) ocean perturbations. A 10-11-year component is partially tied to solar modulation of the cosmic ray flux, and multidecadal variability may relate to either solar modulation or instability of the North Atlantic thermohaline circulation. For the early Holocene bidecadal 14C record we derive a 512-year atmospheric 14C periodicity which relates to instabilities in North Atlantic thermohaline circulation. North Atlantic deep water formation increased near the start, instead of the termination, of the Younger Dryas interval. The ubiquitous 206-year 14C cycle is assigned either to solar modulation, or to solar modulation modified by a climate (ocean) response. The latter modification is discussed as part of a hypothetical mechanism explaining postulated climate-14C relationships in which a minor solar- induced Maunder Minimum climate change is amplified by salinity effects on North Atlantic thermoha line circulation.Keywords
This publication has 75 references indexed in Scilit:
- A high‐resolution Late Quaternary upwelling record from the anoxic Cariaco Basin, VenezuelaPaleoceanography and Paleoclimatology, 1991
- The age and origin of the “Younger Dryas climate event” in Greenland ice coresPaleoceanography and Paleoclimatology, 1990
- A salt oscillator in the glacial Atlantic? 1. The conceptPaleoceanography and Paleoclimatology, 1990
- Holocene climatic change,14C wiggles and variations in solar irradiancePhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1990
- Modelling the climatic response to solar variabilityPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1990
- Recurring variations of probable solar origin in the atmospheric Δ14C time recordGeophysical Research Letters, 1990
- The role of ocean-atmosphere reorganizations in glacial cyclesGeochimica et Cosmochimica Acta, 1989
- A model for solar constant secular changesGeophysical Research Letters, 1988
- Limits on the ventilation rate for the deep ocean over the last 12000 yearsClimate Dynamics, 1986
- A critical look at long‐term Sun‐weather relationshipsReviews of Geophysics, 1978