An experimental study of liquefaction shock waves

Abstract
The existence of a liquefaction shock wave, a compression shock which converts vapour into liquid, has recently been predicted on physical grounds. The liquefaction shock was experimentally produced as the reflected shock at the closed end of a shock tube. Measurements of pressure, temperature, index of refraction and shock velocity confirm the existence of the shock and its general conformity to classical Rankine-Hugoniot conditions, with a discrepancy ∼ 10°C between measured and predicted liquid temperatures. Photographic observations confirmed the existence of a clear liquid phase and revealed the (unanticipated) presence of small two-phase torus-form rings. These rings are interpreted as vortices and are formed in or near the shockfront (∼ 50 rings/mm2 are visible near the shockfront at any given time). Separate experiments with the incident shock under conditions of partial liquefaction produced a fog behind the shock: measurements of laser-beam attenuation yielded the thickness of the condensation zone and estimates of the droplet size (∼ 10−7 m).