Convergent Actions of IκB Kinase β and Protein Kinase Cδ Modulate mRNA Stability through Phosphorylation of 14-3-3β Complexed with Tristetraprolin

Abstract
Regulation of gene expression at the level of mRNA stability is a major topic of research; however, knowledge about the regulatory mechanisms affecting the binding and function of AU-rich element (ARE)-binding proteins (AUBPs) in response to extracellular signals is minimal. The β1,4-galactosyltransferase 1 (β4GalT1) gene enabled us to study the mechanisms involved in binding of tristetraprolin (TTP) as the stability of its mRNA is regulated solely through one ARE bound by TTP in resting human umbilical vein endothelial cells. Here, we provide evidence that the complex formation of TTP with 14-3-3β is required to bind β4GalT1 mRNA and promote its decay. Furthermore, upon tumor necrosis factor alpha stimulation, the activation of both Iκβ kinase and protein kinase Cδ is involved in the phosphorylation of 14-3-3β on two serine residues, paralleled by release of binding of TTP and 14-3-3β from β4GalT1 mRNA, nuclear sequestration of TTP, and β4GalT1 mRNA stabilization. Thus, a key mechanism regulating mRNA binding and function of the destabilizing AUBP TTP involves the phosphorylation status of 14-3-3β.