Void Fraction and Pressure Drop in Liquid Metal Two-Phase Flow

Abstract
This paper describes a new correlation for predicting a two-phase frictional pressure drop multiplier, and discusses the pressure level effects and the mass velocity effects. This correlation predicts satisfactorily the frictional pressure drop not only for liquid metals but also for ordinary fluid two-phase flow in a wide range of flow variables. The authors' void fraction correlation previously proposed is also compared with published data of void fraction for liquid metal two-phase flow, and is found to represent well the mass velocity effects. Wettability and magnetohydrodynamic effects are discussed briefly in relation to the hydrodynamic characteristics of liquid metal two-phase flow.