Synaptic inputs to retinal ganglion cells that set the circadian clock
- 23 August 2006
- journal article
- Published by Wiley in European Journal of Neuroscience
- Vol. 24 (4), 1117-1123
- https://doi.org/10.1111/j.1460-9568.2006.04999.x
Abstract
Melanopsin-containing retinal ganglion cells (RGCs) project to the suprachiasmatic nuclei (SCN) and mediate photoentrainment of the circadian system. Melanopsin is a novel retinal-based photopigment that renders these cells intrinsically photosensitive (ip). Although genetic ablation of melanopsin abolishes the intrinsic light response, it has a surprisingly minor effect on circadian photoentrainment. This and other non-visual responses to light are lost only when the melanopsin deficiency is coupled with mutations that disable classical rod and cone photoreceptors, suggesting that melanopsin-containing RGCs also receive rod- and cone-driven synaptic inputs. Using whole-cell patch-clamp recording, we demonstrate that light triggers synaptic currents in ipRGCs via activation of ionotropic glutamate and γ-aminobutyric acid (GABA) receptors. Miniature postsynaptic currents (mPSCs) were clearly observed in ipRGCs, although they were less robust and were seen less frequently than those seen in non-ip cells. Pharmacological treatments revealed that the majority of ipRGCs receive excitatory glutamatergic inputs that were blocked by DNQX and/or kynurenic acid, as well as inhibitory GABAergic inputs that were blocked by bicuculline. Other ipRGCs received either glutamatergic or GABAergic inputs nearly exclusively. Although strychnine (Strych)-sensitive mPSCs were evident on many non-ipRGCs, indicating the presence of glycinergic inputs, we saw no evidence of Strych-sensitive events in ipRGCs. Based on these results, it is clear that SCN-projecting RGCs can respond to light both via an intrinsic melanopsin-based signaling cascade and via a synaptic pathway driven by classical rod and/or cone photoreceptors. It remains to be determined how the ipRGCs integrate these temporally distinct inputs to generate the signals that mediate circadian photoentrainment and other non-visual responses to light.Keywords
This publication has 25 references indexed in Scilit:
- Illumination of the Melanopsin Signaling PathwayScience, 2005
- Induction of photosensitivity by heterologous expression of melanopsinNature, 2005
- Addition of human melanopsin renders mammalian cells photoresponsiveNature, 2005
- Melanopsin Forms a Functional Short-Wavelength PhotopigmentBiochemistry, 2003
- Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: Bifurcation and melanopsin immunoreactivityJournal of Comparative Neurology, 2003
- Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout MiceScience, 2003
- Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic PhotosensitivityScience, 2002
- Photoreceptive net in the mammalian retinaNature, 2002
- Regulation of the Mammalian Pineal by Non-rod, Non-cone, Ocular PhotoreceptorsScience, 1999
- Transplanted Suprachiasmatic Nucleus Determines Circadian PeriodScience, 1990