An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice
Open Access
- 1 November 2007
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 117 (11), 3540-3550
- https://doi.org/10.1172/jci32312
Abstract
Changes in cytoplasmic Ca2+ levels regulate a variety of fundamental cellular functions in virtually all cells. In nonexcitable cells, a major pathway of Ca2+ entry involves receptor-mediated depletion of intracellular Ca2+ stores followed by the activation of store-operated calcium channels in the plasma membrane. We have established a mouse line expressing an activating EF hand motif mutant of stromal interaction molecule 1 (Stim1), an ER receptor recently identified as the Ca2+ sensor responsible for activation of Ca2+ release–activated (CRAC) channels in T cells, whose function in mammalian physiology is not well understood. Mice expressing mutant Stim1 had macrothrombocytopenia and an associated bleeding disorder. Basal intracellular Ca2+ levels were increased in platelets, which resulted in a preactivation state, a selective unresponsiveness to immunoreceptor tyrosine activation motif–coupled agonists, and increased platelet consumption. In contrast, basal Ca2+ levels, but not receptor-mediated responses, were affected in mutant T cells. These findings identify Stim1 as a central regulator of platelet function and suggest a cell type–specific activation or composition of the CRAC complex.This publication has 51 references indexed in Scilit:
- The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctionsThe Journal of cell biology, 2006
- Presenilins Form ER Ca2+ Leak Channels, a Function Disrupted by Familial Alzheimer's Disease-Linked MutationsCell, 2006
- Orai1 is an essential pore subunit of the CRAC channelNature, 2006
- Molecular identification of the CRAC channel by altered ion selectivity in a mutant of OraiNature, 2006
- Large Store-operated Calcium Selective Currents Due to Co-expression of Orai1 or Orai2 with the Intracellular Calcium Sensor, Stim1Journal of Biological Chemistry, 2006
- Amplification of CRAC current by STIM1 and CRACM1 (Orai1)Nature Cell Biology, 2006
- A mutation in Orai1 causes immune deficiency by abrogating CRAC channel functionNature, 2006
- STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membraneNature, 2005
- STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ InfluxCurrent Biology, 2005
- Calcium signalling: dynamics, homeostasis and remodellingNature Reviews Molecular Cell Biology, 2003