Analog pigment studies of chromophore-protein interactions in metarhodopsins

Abstract
Several analogue pigments have been prepared containing retinals altered at the cyclohexyl ring or proximal to the aldehyde group in order to examine the role of the chromophore in the formation of the metarhodopsin I and II states of visual pigments. Deletion of the 13-methyl group on the isoprenoid chain did not affect metarhodopsin formation. However, analogue pigments containing chromophores with modified rings did not show the typical absorption changes associated with the metarhodopsin transitions of native or regenerated rhodopsins. In particular, 4-hydroxyretinal pigments did not show clear transitions between the metarhodopsin I and metarhodopsin II states. Pigment formed with an acyclic retinal showed no evidence by absorption spectroscopy of metarhodopsin formation. A retinal altered by substitution of a five-membered ring containing a nitroxide required a more acidic pH than the native pigment for formation of the metarhodopsin II state. ESR data suggest that the ring remains buried within the protein through the metarhodopsin II state. These data indicate that (1), in the transition from rhodopsin to metarhodopsin II, major protein conformational changes are occurring near the lysine-retinal linkage whereas the ring portion of the chromophore remains deeply buried within the protein and (2) pigment absorptions characteristic of the metarhodopsin I and II states may be due to specific protein-chromophore interactions near the region of the chromophore ring.