Differences in the effects of phorbol esters and diacylglycerols on protein kinase C

Abstract
The binding of protein kinase C (PKC) to membranes and appearance of kinase activity are separable events. Binding is a two-step process consisting of a reversible calcium-dependent interaction followed by an irreversible interaction that can only be dissociated by detergents. The irreversibly bound PKC is constitutively active, and the second step of binding may be a major mechanism of PKC activation [Bazzi and Nelsestuen (1988) Biochemistry 27, 7589]. This study examined the activity of other forms of membrane-bound PKC and compared the effects of phorbol esters and diacylglycerols. Like the membrane-binding event, activation of PKC was a two-stage process. Diacylglycerols (DAG) participated in forming an active PKC which was reversibly bound to the membrane. In this case, both activity and membrane binding were terminated by addition of calcium chelators. DAG functioned poorly in generating the constitutively active, irreversible PKC-membrane complex. These propreties differed markedly from phorbol esters which activated PKC in a reversible complex but also promoted constitutive PKC activation by forming the irreversible PKC-membrane complex. The concentration of phorbol esters needed to generate the irreversible PKC-membrane complex was slightly higher than the concentration needed to activate PKC. In addition, high concentrations of phorbol esters (.gtoreq. 50 nM) activated PKC and induced irreversible PKC-membrane binding in the absence of calcium. Despite these striking differences, DAG prevented binding of phorbol esters to high-affinity sites on the PKC-membrane complex. Taken together, the results may suggest that a low-affinity interaction between PKC, phorbol esters, and/or the membrane component was responsible for the irreversible membrane-binding event that produced the constitutively active kinase. These different behaviors of DAG and phorbol esters may be consistent with their different and complex effects in whole cells and tissues.

This publication has 19 references indexed in Scilit: