Abstract
This progress report summarizes work performed by Argonne National Laboratory on long-term thermal embrittlement of cast duplex stainless steels in LWR systems during the six months from October 1991 to March 1992. Charpy-impact, tensile, and fracture toughness J-R curve data are presented for several heats of cast stainless steel that were aged 10,000-58,000 h at 290, 320, and 350{degree}C. The results indicate that thermal aging decreases the fracture toughness of cast stainless steels. In general, CF-3 steels are the least sensitive to thermal aging and CF-8M steels are the most sensitive. The values of fracture toughness J{sub IC} and tearing modulus for CF-8M steels can be as low as {approx}90 kJ/m{sup 2} and {approx}60, respectively. The fracture toughness data are consistent with the Charpy-impact results, i.e. unaged and aged steels that show low impact energy also exhibit lower fracture toughness. All steels reach a minimum saturation fracture toughness after thermal aging; the time to reach saturation depends on the aging temperature. The results also indicate that low-strength cast stainless steels are generally insensitive to thermal aging.