GABAAreceptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells
- 1 March 1991
- journal article
- research article
- Published by Cambridge University Press (CUP) in Visual Neuroscience
- Vol. 6 (3), 229-238
- https://doi.org/10.1017/s0952523800006246
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter used by many neurons of the mammalian retina. To identify the synaptic targets of these cells, we undertook an immunohistochemical study with a monoclonal antibody that recognizes the GABAAreceptors (62−3G1, generously donated by A. de Blas). This antibody labels the somata of at least one group of amacrine cells in the inner nuclear layer. It also labels two groups of somata in the ganglion cell layer: one small and the other much larger. The small cells are likely to be displaced amacrine cells based on their size, although some could be gamma ganglion cells. The much larger receptor-positive cells are clearly ganglion cells, based both on their size and the antibody labeling of the initial portion of their axon. In the peripheral retina, the size of these large somata suggests that many are beta ganglion cells. However, at any point across the retina the density of these cells never exceeded 50% of the density of beta cells as a whole.The antibody also labels a dense plexus of processes that extends throughout the inner plexiform layer (IPL), with a marked concentration in the inner third of the layer. This is the portion of the IPL in which the rod bipolar cells terminate. It is difficult to recognize processes of individual cells in the IPL, so retinae were dissociated. The rod bipolar cells were identified by protein kinase C immunoreactivity (Negishi et al., 1988; Karschin & Wässle, 1990). They were not labeled by the GABAAreceptor antibody. This is surprising in light of tight-seal, whole cell voltage-clamp recordings that have shown that the rod bipolars express functional GABAAreceptors. One possible explanation is that the antibody recognizes only a subset of the GABAAreceptors.Keywords
This publication has 61 references indexed in Scilit:
- Properties of GABA-activated whole-cell currents in bipolar cells of the rat retinaVisual Neuroscience, 1990
- Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pigJournal of Comparative Neurology, 1988
- Monoclonal antibodies and conventional antisera to the GABAA receptor/benzodiazepine receptor/Cl- channel complexJournal of Neuroscience, 1988
- Glycine and glycine receptor immunoreactivity in brain and spinal cordJournal of Neuroscience, 1988
- GABAergic synapses and benzodiazepine receptors are not identically distributed in the primate retinaBrain Research, 1987
- gamma-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells.Proceedings of the National Academy of Sciences, 1987
- The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retinaJournal of Comparative Neurology, 1987
- Distribution of glycine receptors at central synapses: an immunoelectron microscopy study.The Journal of cell biology, 1985
- A Gaba/Benzodiazepine Receptor Complex from Bovine Brain: Purification, Reconstitution and Immunological CharacterizationJournal of Receptor Research, 1984
- Autoradiographic localization of [3H]muscimol in the cat retinaBrain Research, 1981