Optical pulse propagation in the tight-binding approximation

Abstract
We formulate the equations describing pulse propagation in a one-dimensional optical structure described by the tight binding approximation, commonly used in solid-state physics to describe electrons levels in a periodic potential. The analysis is carried out in a way that highlights the correspondence with the analysis of pulse propagation in a conventional waveguide. Explicit expressions for the pulse in the waveguide are derived and discussed in the context of the sampling theorems of finite-energy space and time signals.