Effects of Climatic Warming on Lakes of the Central Boreal Forest

Abstract
Twenty years of climatic, hydrologic, and ecological records for the Experimental Lakes Area of northwestern Ontario show that air and lake temperatures have increased by 2°C and the length of the ice-free season has increased by 3 weeks. Higher than normal evaporation and lower than average precipitation have decreased rates of water renewal in lakes. Concentrations of most chemicals have increased in both lakes and streams because of decreased water renewal and forest fires in the catchments. In Lake 239, populations and diversity of phytoplankton also increased, but primary production showed no consistent trend. Increased wind velocities, increased transparency, and increased exposure to wind of lakes in burned catchments caused thermoclines to deepen. As a result, summer habitats for cold stenothermic organisms like lake trout and opposum shrimp decreased. Our observations may provide a preview of the effects of increased greenhouse warming on boreal lakes.

This publication has 26 references indexed in Scilit: