Formation of N-Acetylglutamate by Extracts of Higher Plants

Abstract
The enzymic synthesis of N-acetylglutamate was studied in extracts of higher plant tissues, especially in sugar beet leaves (Beta vulgaris L.). Sugar beet leaves had an enzyme that transferred the acetyl group either from acetyl-CoA or from N2-acetylornithine to glutamate. The enzyme was so unstable that special precautions were necessary for its detection and appreciable purification was impossible. The Km values were 2.5 and 0.025 mM for acetyl-CoA and N2-acetylornithine, respectively. The Km for glutamate was 23 mM with acetylornithine-glutamate transacetylase and 2.7 mM with acetyl-CoA-glutamate transacetylase. The pH optimum for acetyl-CoA-glutamate transacetylase was about 7.2 whereas that for acetylornithine-glutamate transacetylase was about 8.3. Acetylphosphate, N2-acetyl-2,4-diaminobutyrate, propionyl-CoA, and succinyl-CoA were not substrates. Arginine inhibited the acetyl-CoA-glutamate transacetylase and acetylglutamate phosphokinase but had no effect on the acetylornithineglutamate transacetylase. Related compounds had either no effect or much less than arginine. Arginine had no effect on enzyme levels. Acetyl-CoA-glutamate transacetylase was also found in Raphanus sativus L., Glycine max L. Merr., Arachis hypogaea L., Brassica rapa L., and Pisum sativum L. Acetylornithine-glutamate transacetylase was found in all of the above species plus Zea mays L., Avena sativa L., and Triticum aestivum L.