Abstract
Dietary fats affect health and disease. The assimilation of dietary fats into the body requires that they be digested by lipases. One lipase, pancreatic triglyceride lipase, is essential for the efficient digestion of dietary fats. Pancreatic triglyceride lipase is the archetype of the lipase gene family that includes two homologues of pancreatic triglyceride lipase, pancreatic lipase–related proteins 1 and 2. In recent years, important advances have been made in delineating the mechanisms of lipolysis. The cDNA sequences encoding pancreatic triglyceride lipase and the related proteins have been described. The tertiary structure of human pancreatic triglyceride lipase has been determined alone and in a complex with colipase, a pancreatic protein required for lipase activity in the duodenum. This structural information has allowed the rational design of site-specific mutants of pancreatic triglyceride lipase. Together with the structural information, these mutants have greatly advanced our understanding of the molecular details governing lipolysis. This review describes these studies, which will eventually provide the background for the rational design of nutrition therapy in patients with pancreatic insufficiency and fat malabsorption.