STM induced hydrogen desorption via a hole resonance
Preprint
- 27 February 1998
Abstract
We report STM-induced desorption of H from Si(100)-H(2$\times1$) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes with the Si-H 5$\sigma$ hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum fraction of inelastically scattered electrons at the onset of the field emission regime.All Related Versions
- Version 1, 1998-02-27, ArXiv
- Published version: Physical Review Letters, 80 (12), 2618.