Design and Reinforcement: Vertically Aligned Carbon Nanotube-Based Sandwich Composites

Abstract
Carbon nanotube (CNT) reinforcement of polymer composites has not yielded optimum results in that the composite properties are typically compromised by poor dispersion and random orientation of CNTs in polymers. Given the short lengths available for nanotubes, opportunities lie in incorporating CNTs with other structural reinforcements such as carbon fibers (CFs) to achieve improvement over existing composite designs. Growth of vertically aligned CNTs (VACNTs) offers new avenues for designing high-performance composites by integrating CFs and nanotubes into layered 3D architectures. To obtain composites with high rigidity and damping, we have designed and fabricated VACNT-based sandwich composites from simply stacking the freestanding VACNTs and CF fabrics and infiltrating with epoxy matrix. Comparing with the CF/epoxy laminates, the VACNT-based sandwich composites exhibit higher flexural rigidity and damping, which is achieved due to the effective integration of the VACNTs as an interfacial layer between the CF stacks. Furthermore, the lighter weight of these VACNT-based sandwich composites offers advantages in aerospace and transportation applications.