Disruption of a Magnaporthe grisea cutinase gene.

  • 1 March 1992
    • journal article
    • Vol. 232 (2), 183-90
Abstract
Using a one-step strategy to disrupt CUT1, a gene for cutinase, cut1- mutants were generated in two strains of Magnaporthe grisea. One strain, pathogenic on weeping lovegrass and barley and containing the arg3-12 mutation, was transformed with a disruption vector in which the Aspergillus nidulans ArgB+ gene was inserted into CUT1. Prototrophic transformants were screened by Southern hybridization, and 3 of 53 tested contained a disrupted CUT1 gene (cut1::ArgB+). A second strain, pathogenic on rice, was transformed with a disruption vector in which a gene for hyg B resistance was inserted into CUT1. Two of the 57 transformants screened by Southern hybridization contained a disrupted CUT1 gene (cut1::Hyg). CUT1 mRNA was not detectable in transformants that contained a disrupted gene. Transformants with a disrupted CUT1 gene failed to produce a cutin-inducible esterase that is normally detected by activity staining on non-denaturing polyacrylamide gels. Enzyme activity, measured either with tritiated cutin or with p-nitrophenyl butyrate as a substrate, was reduced but not eliminated in strains with a disrupted CUT1 gene. The infection efficiency of the cut1- disruption transformants was equal to that of the parent strains on all three host plants. Lesions produced by these mutants had an appearance and a sporulation rate similar to those produced by the parent strains. We conclude that the M. grisea CUT1 gene is not required for pathogenicity.