[125I]Iberiotoxin-D19Y/Y36F, the First Selective, High Specific Activity Radioligand for High-Conductance Calcium-Activated Potassium Channels
- 1 February 1997
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 36 (7), 1943-1952
- https://doi.org/10.1021/bi962074m
Abstract
Iberiotoxin (IbTX), a selective peptidyl ligand for high-conductance Ca2+-activated K+ (maxi-K) channels cannot be radioiodinated in biologically active form due to the importance of Y36 in interacting with the channel pore. Therefore, an IbTX double mutant (IbTX-D19Y/Y36F) was engineered, expressed in Escherichia coli, purified to homogeneity, and radiolabeled to high specific activity with 125I. IbTX-D19Y/Y36F and [127I]IbTX-D19Y/Y36F block maxi-K channels expressed in Xenopus laevis oocytes with equal potency as wild-type IbTX (Kd ∼ 1 nM). Under low ionic strength conditions, [125I]IbTX-D19Y/Y36F binds with high affinity to smooth muscle sarcolemmal maxi-K channels (Kd of 5 pM, as determined by either equilibrium binding or kinetic binding analysis), and with a binding site density of 0.45 pmol/mg of protein. Competition studies with wild-type IbTX, IbTX-D19Y/Y36F or charybdotoxin (ChTX) result in complete inhibition of binding whereas toxins selective for voltage-gated K+ channels (margatoxin (MgTX) or α-dendrotoxin (α-DaTX)) do not have any effect on IbTX binding. Indole diterpene alkaloids, which are selective inhibitors of maxi-K channels, and potassium ions both modulate [125I]IbTX-D19Y/Y36F binding in a complex manner. This pattern is also reflected during covalent incorporation of the radiolabeled toxin into the 31 kDa β-subunit of the maxi-K channel in the presence of a bifunctional cross-linking reagent. In rat brain membranes, IbTX-D19Y/Y36F does not displace binding of [125I]MgTX or [125I]-α-DaTX to sites associated with voltage-gated K+ channels, nor do these latter toxins inhibit [125I]IbTX-D19Y/Y36F binding. Taken together, these results demonstrate that [125I]IbTX-D19Y/Y36F is the first selective radioligand for maxi-K channels with high specific activity.Keywords
This publication has 16 references indexed in Scilit:
- High-conductance calcium-activated potassium channels; Structure, pharmacology, and functionJournal of Bioenergetics and Biomembranes, 1996
- Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminalsJournal of Neuroscience, 1996
- Evidence that Ca2+-activated K+ channels participate in the regulation of pituitary prolactin secretionBrain Research, 1994
- Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives.Journal of Clinical Investigation, 1993
- Three‐dimensional structure of natural charybdotoxin in aqueous solution by 1H‐NMR Charybdotoxin possesses a structural motif found in other scorpion toxinsEuropean Journal of Biochemistry, 1991
- Varieties of Calcium-Activated Potassium ChannelsAnnual Review of Physiology, 1989
- Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel.The Journal of general physiology, 1988
- Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength.The Journal of general physiology, 1988
- Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons.The Journal of general physiology, 1987
- Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animalsJournal of Morphology, 1972