Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons.

Abstract
The effects of acetylcholine on cultured hippocampal neurons were investigated by using the whole-cell version of the patch-clamp technique. The CA1 region of the hippocampus was excised from brain slices of young rats (12-19 day old), incubated in a papain solution, and dissociated. Neurons were plated on a glial feeder layer. The experiments were conducted mostly on neurons cultured for 2-6 days. Upon depolarization under voltage clamp, these cells exhibited a fast transient outward current (A-current), which was inhibited by 4-aminopyridine (2.5 mM). Acetylcholine (0.1 microM) also inhibited this A-current, as did the muscarinic agonists bethanechol and muscarine. As expected from their inhibition of the A-current, acetylcholine and 4-aminopyridine both increased the amplitude of the action potential and prolonged its duration. We conclude that the inhibition of the A-current constitutes a mechanism by which acetylcholine exerts its excitatory influence on hippocampal neurons.