FISH assay development for the detection ofp16/CDKN2Adeletion in malignant pleural mesothelioma

Abstract
Aims To develop a fluorescence in-situ hybridisation (FISH) assay for detecting p16/CDKN2A deletion on paraffin tissue sections for use as an ancillary test to distinguish reactive from malignant mesothelial proliferations. Method Dual-colour FISH for p16/CDKN2A and chromosome 9 (CEP-9) was performed on 11 benign mesothelial proliferations and 54 malignant pleural mesothelioma (MPM) cases to establish cut-off values for p16/CDKN2A deletion. A third MYC probe was used to verify cases showing homozygous deletion. Eight equivocal biopsies were used for assay testing. Results Cut-off values for p16/CDKN2A deletion were calculated based on FISH signalling patterns obtained from the benign controls (mean percent nuclei plus three standard deviations). Hemizygous deletion was defined as >44% of nuclei showing the hemizygous (one p16/CDKN2A, two CEP-9 signals) or >15% of nuclei showing the monosomy (one p16/CDKN2A, one CEP-9 signal) deletion patterns. None of the benign cases showed a homozygous deletion pattern (no p16/CDKN2A, at least one CEP-9 signal). In the malignant cases, the percentage of nuclei showing homozygous deletion ranged from 1% to 87%. Therefore, the cut-off value for homozygous deletion was defined as >10%. P16/CDKN2A deletion was detected in 61% (33/54) of MPM cases. Among the equivocal biopsies, four showed homozygous and one showed hemizygous p16/CDKN2A deletion. Age over 60 years, asbestos exposure and p16/CDKN2A deletion were associated with a worse prognosis. Conclusion Distinction between benign and malignant mesothelial proliferations can be diagnostically challenging. FISH for p16/CDKN2A deletion is a useful test for confirming the diagnosis of MPM.