Mollusc‐specific toxins from the venom of Conus textile neovicarius

Abstract
Three peptide toxins exhibiting strong paralytic activity to molluscs, but with no paralytic effects on arthropods or vertebrates, were purified from the venom of the molluscivorous snail Conus textile neovicarius from the Red Sea. The amino acid sequences of these mollusc specific toxins are: TxIA, WCKQSGEMCNLLDQNCCDGYCI-VLVCT (identical to the so called 'King Kong peptide'); TxIB, WCKQSGEMCNVLDQNCCDGYCIVFVCT; TxIIA, WGGYSTYC gamma VDS gamma CCSDNCVRSYCT (gamma = gamma-carboxyglutamate). There is a similarity of the Cys framework of these toxins to that of the omega-conotoxins; however, their net negative charges, high content of hydrophobic residues and uneven number of Cys residues in TxIIA, are highly unusual for conotoxins. When assayed on isolated cultured Aplysia neurons, all three toxins induced membrane depolarization and spontaneous repetitive firing. The TxI toxins also induce a marked prolongation of the action potential duration, which is sodium dependent. These effects differ significantly from the blocking activities of piscivorous venom conotoxins. These mollusc specific conotoxins may therefore serve as new and selective probes for ion-channel functions in molluscan neuronal systems.