Abstract
In juvenile Pacific salmon the changes in salinity preference associated with seaward migration and thyroid activity were studied and used as criteria for the induction of the physiological condition required for migration (migration-disposition).Four species of Oncorhynchus (chum, pink, coho and sockeye) changed preference from fresh to salt water at the onset of seaward migration and maintained this preference throughout the migration season. At the end of this migration period coho and sockeye salmon changed preference from salt to fresh water if retained in fresh water, indicating a re-adaptation to this medium in which they may survive for several years. Chum and pink fry did not show this change in preference and usually died when retained in fresh water. They were apparently unable to re-adapt to this environment.The increasing day length in spring controls the time at which the change in preference from fresh to salt water takes place, and is thus involved in timing the induction of migration-disposition.The photoperiod seems to affect particularly the pituitary-thyroid system. Thyroid activity increases shortly before the onset of migration, remains high during the migration season, and decreases towards its end. The level of thyroid hormone in the blood influences salinity tolerance and preference and, thus, the induction of migration-disposition. Metamorphosis, osmotic "stress" and iodine content of the water may have some additional effect on thyroid activity, but are not the only factors responsible for thyroid hyperactivity during migration.Animals in which migration-disposition has been induced are thought to have become susceptible to appropriate external stimuli "releasing" migration.

This publication has 1 reference indexed in Scilit: