Homogenization of Masonry Using Numerical Simulations

Abstract
Homogenization is one of the most important steps in the numerical analysis of masonry structures where the continuum method is used. In the present study, equivalent elastic properties, strength envelope, and different failure patterns of masonry material are homogenized by numerically simulating responses of a representative volume element (RVE) under different stress conditions. The RVE is modeled with distinctive consideration of the material properties of mortar and brick. In the numerical simulation, various displacement boundaries are applied on the RVE surfaces to derive the stress-strain relation under different conditions. The equivalent overall material properties of the RVE are averaged by integrating the stresses and strains over the entire area. Failure of masonry is defined by three different modes, namely, tensile failure of mortar (Mode I), shear failure of mortar or combined shear failure of brick and mortar (Mode II), and compressive failure of brick (Mode III). The homogenized elastic properties and failure model can be used to analyze large-scale masonry structures.

This publication has 10 references indexed in Scilit: