Bis(diisopropylphosphino)pyridine Iron Dicarbonyl, Dihydride, and Silyl Hydride Complexes

Abstract
Treatment of the bis(diisopropylphosphino)pyridine iron dichloride, ((iPr)PNP)FeCl2 ((iPr)PNP = 2,6-(iPr2PCH2)2(C5H3N)), with 2 equiv of NaBEt3H under an atmosphere of dinitrogen furnished the diamagnetic iron(II) dihydride dinitrogen complex, ((iPr)PNP)FeH2(N2). Addition of 1 equiv of PhSiH3 to ((iPr)PNP)FeH2(N2) resulted in exclusive substitution of the hydride trans to the pyridine to yield the silyl hydride dinitrogen compound, ((iPr)PNP)FeH(SiH2Ph)N2, which has been characterized by X-ray diffraction. The solid-state structure established a distorted octahedral geometry where the hydride ligand distorts toward the iron silyl. Both ((iPr)PNP)FeH2(N2) and ((iPr)PNP)FeH(SiH2Ph)N2 form eta2-dihydrogen complexes upon exposure to H2. The iron hydrides and the eta2-H2 ligands are in rapid exchange in solution, consistent with the previously reported "cis" effect, arising from a dipole/induced dipole interaction between the two ligands. Taken together, the spectroscopic, structural, and reactivity studies highlight the relative electron-donating ability of this pincer ligand as compared to the redox-active aryl-substituted bis(imino)pyridines.