Efficacy of Brain‐Derived Neurotrophic Factor and Neurotrophin‐3 on Neurochemical and Behavioral Deficits Associated with Partial Nigrostriatal Dopamine Lesions
Brain-derived neurotrophic factor (BDNF) promotes the survival of dopamine (DA) neurons, enhances expression of DA neuron characteristics, and protects these cells from 6-hydroxydopamine (6-OHDA) toxicity in vitro. We tested the ability of BDNF or neurotrophin-3 (NT-3) to exert similar protective effects in vivo during chronic delivery of 6-OHDA to the rat neostriatum. Chronic infusions of BDNF or NT-3 (12 µg/day) above the substantia nigra were started 6 days before and continued during an 8-day chronic intrastriatal infusion of 6-OHDA. In control and neurotrophin-treated animals, 6-OHDA treatment selectively depleted 50–60% of nigrostriatal DA nerve terminals but produced little if any loss of pars compacta DA cell bodies. This partial DA lesion resulted in three rotations per minute toward the lesioned hemisphere after treatment with the DA release-inducing drug d-amphetamine. Compared with supranigral infusions of vehicle, BDNF and NT-3 decreased the number of these ipsiversive rotations by 70 and 48% and increased by 20- and 10-fold, respectively, the number of contraversive rotations observed after amphetamine injection. When challenged with the DA receptor agonist apomorphine, BDNF- and NT-3-treated animals also exhibited a seven- and 3.5-fold increase in the number of contraversive rotations relative to the vehicle group, respectively. Compared with vehicle, BDNF increased striatal levels of homovanillic acid (HVA; 86%), 3,4-dihydroxyphenylacetic acid (DOPAC; 42%), and 5-hydroxyindoleacetic acid (5-HIAA; 32%) and the HVA/DA (43%) and 5-HIAA/serotonin (34%) ratios in the DA-denervated striatum. NT-3 augmented only striatal 5-HIAA levels (24%). Neither factor altered the 6-OHDA-induced decrease in striatal DA levels or high-affinity DA uptake and thus did not protect against the destruction of DA terminals and did not alter striatal D1 or D2 ligand binding. Choline, GABA, and glutamate uptake in the striatum were not altered by the lesion or neurotrophin treatment. Thus, BDNF and to a lesser extent NT-3 reverse rotational behavioral deficits and augment striatal DA and 5-HT metabolism in a partial DA lesion model.