TOPOISOMERASE II-MEDIATED DNA BREAKS AND CYTOTOXICITY IN RELATION TO CELL-PROLIFERATION AND THE CELL-CYCLE IN NIH-3T3 FIBROBLASTS AND L1210 LEUKEMIA-CELLS
- 15 April 1987
- journal article
- research article
- Vol. 47 (8), 2050-2055
Abstract
The DNA intercalator, 4''-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and the nonintercalator, etoposide (VP-16) produce topoisomerase II-mediated protein-linked DNA strand breaks. This function of topoisomerase II was investigated in relation to cell proliferation and cell cycle. Mouse fibroblasts NIH 3T3 and mouse leukemia L1210 cells stop proliferation when they reach a certain density. Nuclei were isolated from proliferative or quiescent cells and then treated with drug for 30 min. DNA modifications were assayed by alkaline elution. We found that the frequencies of m-AMSA- or VP-16-induced DNA-protein links were higher in nuclei from exponentially growing than in those from quiescent cells in both the 3T3 and the L1210 lines. Drug-induced protein-associated DNA breaks were also studied as a function of the cell cycle in 3T3 cells that had been arrested by contact inhibition in medium containing 1% calf serum and then stimulated to proliferate by replating at a lower cell density in medium containing 10% serum. In these synchronized cells, a large peak of [3H]thymidine incorporation occurred 18-30 h after replating. The yield of DNA-protein cross-links produced by 30-min drug treatments of nuclei isolated at various times after growth initiation increased concomitantly with the peak of the DNA synthesis. The topoisomerase II activity of nuclear extracts, as measured by kinetoplast DNA decatenation followed a similar pattern. Using colonyforming assays, we also observed that m-AMSA and VP-16 were most cytotoxic in proliferative cells and during DNA synthesis. These results suggest that alkaline elution measurement of m-AMSA- or VP-16-induced protein-linked DNA breaks reflects the association of topoisomerase II with DNA. This association is increased during DNA replication, making the cells more vulnerable to m-AMSA and VP-16 at this time.This publication has 8 references indexed in Scilit:
- EFFECTS OF THE BIFUNCTIONAL ANTITUMOR INTERCALATOR DITERCALINIUM ON DNA IN MOUSE LEUKEMIA-L1210 CELLS AND DNA TOPOISOMERASE-II1986
- DNA topoisomerase II is required at the time of mitosis in yeastCell, 1985
- Localization of topoisomerase II in mitotic chromosomes.The Journal of cell biology, 1985
- CORRELATIONS BETWEEN INTERCALATOR-INDUCED DNA STRAND BREAKS AND SISTER CHROMATID EXCHANGES, MUTATIONS, AND CYTO-TOXICITY IN CHINESE-HAMSTER CELLS1985
- Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agentsBiochemistry, 1984
- Comparison of cytotoxicity and DNA breakage activity of congeners of podophyllotoxin including VP16-213 and VM26: a quantitative structure-activity relationshipBiochemistry, 1984
- Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide.Proceedings of the National Academy of Sciences, 1984
- DNA Gyrase and the Supercoiling of DNAScience, 1980