Combined Perfusion and Diffusion-Weighted Magnetic Resonance Imaging in a Rat Model of Reversible Middle Cerebral Artery Occlusion
- 1 March 1995
- journal article
- research article
- Published by Wolters Kluwer Health in Stroke
- Vol. 26 (3), 451-458
- https://doi.org/10.1161/01.str.26.3.451
Abstract
Background and Purpose Diffusion-weighted imaging and dynamic first-pass bolus tracking of susceptibility contrast agents (perfusion imaging) are two new magnetic resonance imaging techniques that offer the possibility of early diagnosis of stroke. The present study was performed to evaluate the diagnostic information derived from these two methods in a rat model of temporary focal ischemia. Methods Fifteen male Wistar rats were assigned to 45 (n=7) or 120 minutes (n=8) of middle cerebral artery occlusion followed by reperfusion using the intraluminal filament technique. The diffusion-weighted images were collected, and areas of hyperintensity were compared with histologically assessed areas of ischemic injury. The magnetic resonance perfusion image series were postprocessed to produce topographic maps reflecting the maximum reduction in the signal obtained during the first passage of the contrast agent and the time delay between the arrival of the bolus and the point of maximum contrast-agent effect. Results Hyperintensity in diffusion-weighted images was demonstrated after 30 minutes of middle cerebral artery occlusion and was mainly expressed in the lateral caudoputamen and parts of the lower frontoparietal cortex. Reperfusion after 45 minutes of occlusion reduced the area of hyperintensity from 24.2% to 9.9% of hemispheric area. In the group with 120 minutes of occlusion, the hyperintense area increased from 24.4% to 29.1%. Relative to the nonischemic hemisphere, the changes in the topographic maps of maximum signal reduction occurred in the lateral caudoputamen and adjacent lower neocortical areas. Increased time delay to maximum effect, however, was seen also in the upper frontoparietal cortex. Conclusions Hyperintensity in diffusion-weighted images was reversible after 45 minutes but not after 120 minutes of middle cerebral artery occlusion. Analysis of the signal-reduction and time-delay parametric maps demonstrated regions of different perfusion changes in the ischemic hemisphere.Keywords
This publication has 20 references indexed in Scilit:
- Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion‐weighted echo‐planar imagingMagnetic Resonance in Medicine, 1993
- Perfusion and diffusion MR imaging of thromboembolic strokeJournal of Magnetic Resonance Imaging, 1993
- K‐space substitution: A novel dynamic imaging techniqueMagnetic Resonance in Medicine, 1993
- Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time?Magnetic Resonance in Medicine, 1993
- Temporal evolution of focal cerebral ischemia in the rat assessed by T2-weighted and diffusion-weighted magnetic resonance imagingBrain Topography, 1992
- Ischemic Thresholds of Cerebral Protein Synthesis and Energy State following Middle Cerebral Artery Occlusion in RatJournal of Cerebral Blood Flow & Metabolism, 1991
- Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging.Stroke, 1991
- Detection with echo‐planar MR imaging of transit of susceptibility contrast medium in a rat model of regional brain ischemiaJournal of Magnetic Resonance Imaging, 1991
- Perfusion imaging with NMR contrast agentsMagnetic Resonance in Medicine, 1990
- Cerebral Transit of an Intravascular Tracer May Allow Measurement of Regional Blood Volume but Not Regional Blood FlowJournal of Cerebral Blood Flow & Metabolism, 1984