Abstract
Fluorine has only one stable isotope, F19. If neutrons are produced by the F19(α, n)Na22 reaction the neutron output can be calculated from the yield of the resulting radioactive Na22. The growth of Na22 (half-life, 2.58 years) has been measured in a neutron source consisting originally of 1.6 curies Po210 mixed with CaF2 powder. Since Na22 is a positron emitter, discrimination against γ-rays from Po210 and from nuclear reactions could be achieved by detecting the two positron annihilation quanta in coincidence. The Na22 growth has been followed over 20 months and is in agreement with the theoretical growth curve. Comparison with a calibrated Na22 source yielded a neutron emission rate of (10.70 ± 0.25) × 104 sec−1. This resulted in a neutron emission rate of (3.16 ± 0.10) × 106 sec−1 for the Ra-α-Be source of the National Research Council, in good agreement with (3.22 ± 0.05) × 106 sec−1 obtained by a neutron thermalization method.

This publication has 5 references indexed in Scilit: