Abstract
Estimates of the amount of material moving annually from terrestrial ecosystems to the ocean are largely based on an incomplete understanding of events occurring throughout the hydrologic year, and only a vague comprehension of in-stream processes controlling that export. Discharge, suspended sediment, particulate organic matter (POM; > 0.5 μm), dissolved organic carbon (DOC; 1 mm) is negligible (normally < 0.1 mg∙L−1), as is oxidation of the suspended load (< 0.5%∙d−1). Effects of summer storms, natural diel variations, and depth of sample from the water column are shown to have a minimal influence on concentrations. Rating curves (kg∙d−1 vs. discharge) are developed to estimate the annual yield of sediment, POM, and DOC, and to evaluate long-term variations. From the results I suggest that in-stream processing and retention devices exert considerable control over the quantity and nature of suspended organic material. Physical processes such as the discharge regime and stream power are relatively less important in determining organic concentrations, but more important in determining sediment concentrations.Key words: seston, carbon, sediment, boreal forest, watershed, river, stream, export