A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein
- 1 July 1990
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 346 (6282), 366-369
- https://doi.org/10.1038/346366a0
Abstract
THE gene responsible for cystic fibrosis (CF) has recently been identified and is predicted to encode a protein of 1,480 ami no acids called the CF transmembrane conductance regulator (CFTR)1,2. Several functional regions are thought to exist in the CFTR protein, including two areas for ATP-binding, termed nucleotide-binding folds (NBFs), a regulatory (R) region that has many possible sites for phosphor} lation by protein kinases A and C, and two hydro-phobic regions that probably interact with cell membranes2. The most common CF gene mutation leads to omission of phenv lalanine residue 508 in the putative first NBF, indicating that this region is functionally important2–4. To determine whether other mutations occur in the NBFs of CFTR, we determined the nucleotide sequences of exons 9, 10, 11 and 12 (encoding the first NBF) and exons 20, 21 and 22 (encoding most of the second NBF) from 20 Caucasian and 18 American-black CF patients. One cluster of four mutations was discovered in a 30-base-pair region of exon 11. Three of these mutations cause amino-acid substitutions at residues that are highly conserved among the CFTR protein, the multiple-drug-resistance proteins and ATP-binding membrane-associated transport proteins. The fourth mutation creates a premature termination signal. These mutations reveal a functionally important region in the CFTR protein and provide further evidence that CFTR is a member of the family of ATP-dependent transport proteins2,5.Keywords
This publication has 13 references indexed in Scilit:
- Mutation Analysis for Heterozygote Detection and the Prenatal Diagnosis of Cystic FibrosisNew England Journal of Medicine, 1990
- A new polymorphic locus, D7S411, isolated by cloning from preparative pulse-field gels is close to the mutation causing cystic fibrosisGenomics, 1990
- Identification of the Cystic Fibrosis Gene: Chromosome Walking and JumpingScience, 1989
- Identification of the Cystic Fibrosis Gene: Genetic AnalysisScience, 1989
- Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNAScience, 1989
- Protein joins transport familyNature, 1989
- Recurrent mutations in haemophilia A give evidence for CpG mutation hotspotsNature, 1986
- Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuriaNature, 1986
- Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell AnemiaScience, 1985
- Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene clusterNature, 1982