A Chemical Route to Graphene for Device Applications

Abstract
Oxidation of graphite produces graphite oxide, which is dispersible in water as individual platelets. After deposition onto Si/SiO2 substrates, chemical reduction produces graphene sheets. Electrical conductivity measurements indicate a 10000-fold increase in conductivity after chemical reduction to graphene. Tapping mode atomic force microscopy measurements show one to two layer graphene steps. Electrodes patterned onto a reduced graphite oxide film demonstrate a field effect response when the gate voltage is varied from +15 to −15 V. Temperature-dependent conductivity indicates that the graphene-like sheets exhibit semiconducting behavior.