Studies on cell communication with enucleated human fibroblasts.

Abstract
Metabolic cooperation, the correction of the mutant phenotype in cells deficient in hypoxanthine phosphoribosyltransferase (HPRT-) by intimate contact with normal cells (HPRT+), represents a form of cell communication that is easily studied with autoradiography. The formation of cell junctions needed for communication did not require protein synthesis nor was it under the immediate control of the cell nucleus. Enucleated normal cells efficiently communicate with HPRT- mutant cells. The effectiveness of enucleated cells as donors in metabolic cooperation provides evidence that it is the transfer of small molecules, nucleotide or nucleotide derivatives that is responsible for correction of the mutant phenotype. Karyoplasts (nuclei with small amounts of cytoplasm surrounded by a plasma membrane) are unable to efficiently communicate with intact cells. The utilization of [3H]hypoxanthine by communicating mixtures of HPRT+ and HPRT- human cells is not significantly different than in the normal cells alone. Metabolic cooperation, as studied, involves a redistribution of purine-containing compounds among communicating cells.