Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution

Abstract
The proton has been the nucleus of choice for NMR studies of macromolecules because it is ubiquitous; it provides the highest sensitivity; its resonances can be identified with types of amino and nucleic acids by means of experiments utilizing proton spin-spin interaction and chemical shift; and, most important, proton NMR yields distance information via the nuclear Overhauser effect (NOE). Many of these advantages are lost for larger biopolymers (molecular weight more than 15 kDa) for which the line width is considerably greater than the proton-proton spin-spin interaction. The spin-spin interaction is then useless or difficult to use for assignment; and furthermore the proton line width and the number of proton resonances both increase in proportion to the molecular weight, thereby increasing the problem of resonance overlap to an intolerable degree.

This publication has 63 references indexed in Scilit: