Abstract
In this paper we consider an approach to neuronal transients that is predicated on the information they contain. This perspective is provided by information theory, in particular the principle of maximum information transfer. It is illustrated here in application to visually evoked neuronal transients. The receptive fields that ensue concur with those observed in the real brain, predicting, almost exactly, functional segregation of the sort seen in the visual system. This information theoretical perspective can be reconciled with a selectionist stance by noting that a high mutual information among neuronal systems and the environment has, itself, adaptive value and will be subject to selective pressure, at any level one cares to consider.