Electrical Properties of Amorphous Silicon Transistors and MIS‐Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations

Abstract
The electrical properties of silicon nitride/amorphous silicon structures were investigated using thin film transistors (TFTs) and metal insulator semiconductor (MIS) devices employing either a top nitride (TN) or bottom nitride (BN) as gate insulator. The density of states (DOS) deduced from the subthreshold transfer characteristic of the TFTs is one to two orders of magnitude higher than that obtained from quasistatic C(V) measurements on the MIS structures. This difference is discussed by considering the different thickness of the a‐Si:H layers of the two devices and the role of a fixed charge at the rear interface. Both techniques indicate a DOS in BN devices which is only slightly lower than in TN devices, by less than a factor of two. The measured field effect mobility of BN TFTs is about 70% higher. The differences in the measured field effect mobility for TN and BN configuration are discussed and ascribed to the source and drain parasitic resistances. The conclusion is verified by the fabrication of a TN TFT with a pure phosphine rear surface treatment, which exhibits performance comparable to BN TFTs.