Anhpcertified reduced basis method for parametrized parabolic partial differential equations

Abstract
In this article, we introduce an hp certified reduced basis (RB) method for parabolic partial differential equations. We invoke a Proper Orthogonal Decomposition (POD) (in time)/Greedy (in parameter) sampling procedure first in the initial partition of the parameter domain (h-refinement) and subsequently in the construction of RB approximation spaces restricted to each parameter subdomain (p-refinement). We show that proper balance between additional POD modes and additional parameter values in the initial subdivision process guarantees convergence of the approach. We present numerical results for two model problems: linear convection–diffusion and quadratically non-linear Boussinesq natural convection. The new procedure is significantly faster (more costly) in the RB Online (Offline) stage.