Measurement of the millisecond activation switch of G protein–coupled receptors in living cells

Abstract
Hormones and neurotransmitters transduce signals through G protein-coupled receptors (GPCR). Despite their common signaling pathways, however, the responses they elicit have different temporal patterns. To reveal the molecular basis for these differences we have developed a generally applicable fluorescence-based technique for real-time monitoring of the activation switch of GPCRs in living cells. We used such direct measurements to investigate the activation of the alpha(2A)-adrenergic receptor (alpha(2A)AR; neurotransmitter) and the parathyroid hormone receptor (PTHR; hormone) and observed much faster kinetics than expected: approximately 40 ms for the alpha(2A)AR and approximately 1 s for the PTHR. The different switch times are in agreement with the different receptors' biological functions. Agonists and antagonists could rapidly switch the receptors on or off, whereas a partial agonist caused only a partial signal. This approach allows the comparison of agonist and partial agonist intrinsic activities at the receptor level and provides evidence for millisecond activation times of GPCRs.