Measurement of Gas Temperature Profile in Discharge Region of Excimer Laser with Laser Schlieren Method

Abstract
Shock waves are generated by pulse discharges in the cavity of excimer lasers. The shock waves cause arcing, nonhomogeneous excitation of laser gas and limitation of repetition rate of a high-repetition-rate excimer laser. Distribution of temperature rise by pulse discharge is an essential factor for generation and propagation of shock waves. Gas temperature profiles in the discharge region of the excimer laser cavity are measured by a laser schlieren method for single-pulse operations. The results show that the temperature distribution depends on the xenon concentration. In the cases of pure helium and higher xenon concentration, the temperature distributions are steeper than those in the cases of lower xenon concentration.