Multivariate ARMA modeling by scalar algorithms

Abstract
An algorithm for multichannel autoregressive moving average (ARMA) modeling which uses scalar computations only and is well suited for parallel implementation is proposed. The given ARMA process is converted to an equivalent scalar, periodic ARMA process. The scalar autoregressive (AR) parameters are estimated by first deriving a set of modified Yule-Walker-type equations and then solving them by a parallel, order recursive algorithm. The moving average (MA) parameters are estimated by a least squares method from the estimates of the input samples obtained via a high-order, periodic AR approximation of the scalar process

This publication has 7 references indexed in Scilit: