Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin

Abstract
Drug access to tumors is limited by diffusion through the tumor interstitium. We used a microfiberoptic epifluorescence photobleaching method to determine the role of extracellular matrix (ECM) components in macromolecule diffusion deep in tumor tissue. In subcutaneous B16 tumors in living mice, translational diffusion of 10 kDa FITC-dextran was slowed 2- to 3-fold (compared with its diffusion in water) within a depth of 0.2 mm from the tumor surface, but >10-fold beyond a depth of 1 mm. Diffusion of larger macromolecules, FITC-albumin and 500 kDa FITC-dextran, was slowed by up to 40-fold at 0.5 mm and 300-fold at 2 mm. Intratumoral collagenase (to digest collagen) or cathespin C (to digest decorin) each increased diffusion of 10 kDa FITC-dextran by ∼2-fold. However, these treatments dramatically increased diffusion (>10-fold) of larger macromolecules, such as 500 kDa dextran, in deep tumor (2 mm depth). Intratumoral hyaluronidase, in contrast, slowed diffusion throughout the tumor. In vitro measurements ...
Funding Information
  • National Institutes of Health (EB00415, DK35124, EY13574, HL59198, DK72517, HL73856)
  • Cystic Fibrosis Foundation