Interleukin-8 Secretion of Cortical Tubular Epithelial Cells Is Directed to the Basolateral Environment and Is Not Enhanced by Apical Exposure toEscherichia coli

Abstract
In upper urinary tract infections, tubular epithelial cells (TEC) may play a pivotal role in the initiation of the renal inflammatory response. They exert crucial immunological functions such as processing and presentation of foreign antigen, secretion of proinflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha) and chemokines (IL-8, MCP-1, ENA-78, and RANTES). Since monolayer cultures are a limited model for polarized tubular epithelial cells, we studied the side-dependent IL-8 secretion of TEC by using cell culture inserts as a basement membrane imitation. Primary cultures of proximal TEC were stimulated with differently fimbriated mutants of Escherichia coli, E. coli LPS, S-fimbria isolates, and IL-1α. IL-8 protein was measured by enzyme-linked immunosorbent assay, and IL-8-like biological activity was tested by measuring elastase release from polymorphonuclear cells in supernatants of the upper and lower compartments. IL-8 mRNA was compared by competitive PCR. IL-8 secretion by TEC into the basolateral environment was significantly higher than secretion into the apical compartment, representing the tubular lumen. However, stimulation of IL-8 secretion by TEC was restricted to IL-1α and was not inducible by E. coli mutants, S fimbriae, or lipopolysaccharide. With this in vitro model of polarized TEC, we show that luminal contact of TEC with uropathogenic E. coli does not result in enhanced IL-8 secretion. The basolaterally directed production of the neutrophil chemotactic factor IL-8 by TEC after stimulation with IL-1α might play an important role in the initiation of inflammatory cell influx into the renal parenchyma.