Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films

Abstract
By using bifunctional surface modifiers (SH−R−COOH), CdSe quantum dots (QDs) have been assembled onto mesoscopic TiO2 films. Upon visible light excitation, CdSe QDs inject electrons into TiO2 nanocrystallites. Femtosecond transient absorption as well as emission quenching experiments confirm the injection from the excited state of CdSe QDs into TiO2 nanoparticles. Electron transfer from the thermally relaxed s-state occurs over a wide range of rate constant values between 7.3 × 109 and 1.95 × 1011 s-1. The injected charge carriers in a CdSe-modified TiO2 film can be collected at a conducting electrode to generate a photocurrent. The TiO2−CdSe composite, when employed as a photoanode in a photoelectrochemical cell, exhibits a photon-to-charge carrier generation efficiency of 12%. Significant loss of electrons occurs due to scattering as well as charge recombination at TiO2/CdSe interfaces and internal TiO2 grain boundaries.

This publication has 52 references indexed in Scilit: