Excretion of sterols from the skin of normal and hypercholesterolemic humans

Abstract
The 24 hr sterol excretion from the entire skin surface was determined in six normal and five hypercholesterolemic (Type II) patients fed a controlled, eucaloric diet containing 400 mg of plant sterols. All subjects received radiolabeled cholesterol intravenously in order to measure cholesterol turnover and exchange. The 24 hr skin surface lipids were collected subsequently at intervals of 7-10 days. Sterols were quantified and identified by a combination of thin-layer and gas-liquid chromatographic methods. The mean 24 hr excretion of cholesterol in milligrams was 82.6 in the normal subjects and 82.7 in the hypercholesterolemic patients. Cholesterol constituted 89% of the total sterol excretion through the skin surface in both groups. The specific radioactivity of cholesterol in the skin surface lipids increased gradually after the intravenous administration of the isotope. Within 4-5 wk the specific activity equaled and then remained higher than that of the plasma up to 10 wk. These specific activity curves suggested that, for at least some of skin surface cholesterol, there was a precursor-product relationship between the plasma cholesterol and the skin cholesterol. The presence of plant sterols, beta-sitosterol, campesterol, and stigmasterol in the skin surface lipids of man has not been reported previously. We identified these sterols in the skin surface lipids of all of our subjects. They constituted about 7% of the total skin surface sterols. The occurrence of plant sterols in the skin surface lipids suggested that plasma sterols were transferred from the plasma into the skin. 1-2% of the skin surface sterols were tentatively identified as lathosterol and lanosterol. The present study documented that a significant amount of cholesterol was excreted from the skin surface and that probably there was a net transfer of plasma cholesterol into the skin surface lipids. Both normal subjects and hypercholesterolemic patients excreted similar amounts of cholesterol per day into the skin surface lipids. We suggest that this daily loss of cholesterol from the skin surface may need to be considered in sterol balance studies.