Caveolin-1 Expression Negatively Regulates Cell Cycle Progression by Inducing G0/G1Arrest via a p53/p21WAF1/Cip1-dependent Mechanism
- 1 August 2001
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 12 (8), 2229-2244
- https://doi.org/10.1091/mbc.12.8.2229
Abstract
Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G0/G1phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G0/G1phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G0/G1phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G0/G1phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G0/G1population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.Keywords
This publication has 75 references indexed in Scilit:
- Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav‐1, ‐2, and ‐3)FEBS Letters, 1998
- Caveolin‐mediated regulation of signaling along the p42/44 MAP kinase cascade in vivoFEBS Letters, 1998
- Interaction of a Receptor Tyrosine Kinase, EGF-R, with CaveolinsJournal of Biological Chemistry, 1997
- Identification, sequence, and expression of caveolin-2 defines a caveolin gene family.Proceedings of the National Academy of Sciences, 1996
- Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in MuscleJournal of Biological Chemistry, 1996
- A photo‐reactive derivative of ganglioside GM1 specifically cross‐links VIP21‐caveolin on the cell surfaceFEBS Letters, 1995
- The sequence of human caveolin reveals identity with VIP21, a component of transport vesiclesFEBS Letters, 1992
- APC mutations occur early during colorectal tumorigenesisNature, 1992
- Caveolin, a protein component of caveolae membrane coatsCell, 1992
- Efficient selection for high-expression transfectants with a novel eukaryotic vectorGene, 1991