Inhibition in the Dynamics of Selective Attention: An Integrative Model for Negative Priming

Abstract
We introduce a computational model of the negative priming (NP) effect that includes perception, memory, attention, decision making, and action. The model is designed to provide a coherent picture across competing theories of NP. The model is formulated in terms of abstract dynamics for the activations of features, their binding into object entities, their semantic categorization as well as related memories and appropriate reactions. The dynamic variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. From the necessity of quantifying the experimental paradigms, we conclude that the specificity of the experimental paradigm must be taken into account when predicting the nature of the NP effect.