LMM Auger spectra of Cu, Zn, Ga, and Ge, II. Relationship with the L23 photoelectron spectra via the L2L3M45 Coster-Kronig process

Abstract
In this paper we present conclusive experimental evidence that the Auger satellite structure on the low-kinetic-energy side of the L3M45M45 Auger spectra in Cu and Zn is a direct result of the L2L3M45 Coster-Kronig transition preceding the Auger transition. The position of the satellite structure is compared with numerical calculations of the final state for the ionized atoms. The same Coster-Kronig process is shown to be responsible for the anomalous intensity ratio of the L2M45M45 to L3M45M45 Auger spectra. From this intensity ratio the Auger part of the L23 photoelectron linewidths can be determined and is shown to be in reasonable agreement with theoretical values.