Abstract
: The isotopic abundances depend on the universal evolution of elements and on the individual history of particular objects. Since it is believed that unprocessed material of the solar nebula is preserved in comets, the data concerning the abundance of stable isotopes in these primitive bodies are of some importance in the cosmological context. The present status of this problem is reviewed. The reliability of results for nuclear species with cosmological and cosmogonical implications, such as D/H, C 12/13, N 14/15, O 16/18, and Mg 24/25/26, is discussed. Significant variation is found for the isotopic abundance of carbon, depending upon which carbon reservoir is sampled. Deuterium is probably enhanced relative to the interstellar ratio. For other isotopes, the ratios are close to those of the terrestrial data. The tendency of the D/H ratio to be at higher values indicates a low temperature in the environment of the comet’s formation, and, together with similar effects in the outer planets, suggests that there were two different primordial reservoirs of deuterium in the solar system. The 12C/13C ratio inferred from in situ mass spectrometry of the dust, as well as from the ground-based optical spectra of the Swan band, tends to be approximately equal to the average terrestrial ratio (89) or larger. Recent results obtained from the CN band provide a significantly lower value (about 65), which corresponds to the carbon isotopic ratio in the diffuse interstellar clouds. The enhancement of deuterium and the possible differences of the carbon isotopic ratio in different species and refractory material are indicative of chemical fractionation processes in the protosolar nebula.

This publication has 1 reference indexed in Scilit: