Stable multiscale bases and local error estimation for elliptic problems
- 1 February 1997
- journal article
- Published by Elsevier in Applied Numerical Mathematics
- Vol. 23 (1), 21-47
- https://doi.org/10.1016/s0168-9274(96)00060-8
Abstract
No abstract availableThis publication has 21 references indexed in Scilit:
- A wavelet Galerkin method for the stokes equationsComputing, 1996
- A Posteriori Error Estimates for Elliptic Problems in Two and Three Space DimensionsSIAM Journal on Numerical Analysis, 1996
- Local Decomposition of Refinable Spaces and WaveletsApplied and Computational Harmonic Analysis, 1996
- Efficiency of a posteriori BEM–error estimates for first-kind integral equations on quasi–uniform meshesMathematics of Computation, 1996
- A posteriori error estimates for the wavelet Galerkin methodApplied Mathematics Letters, 1995
- Fast wavelet transforms and numerical algorithms ICommunications on Pure and Applied Mathematics, 1991
- Boundary Integral Operators on Lipschitz Domains: Elementary ResultsSIAM Journal on Mathematical Analysis, 1988
- A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimatorComputer Methods in Applied Mechanics and Engineering, 1987
- Some a posteriori error estimators for elliptic partial differential equationsMathematics of Computation, 1985
- Error Estimates for Adaptive Finite Element ComputationsSIAM Journal on Numerical Analysis, 1978