Properties of concentrically organized X and Y ganglion cells of macaque retina

Abstract
1. Macaque retinal ganglion cells having concentrically organized receptive fields were classified as X- or Y-cells on the basis of the linearity or nonlinearity of their spatial summation to a "null" test of alternating contrast and drifting gratings. 2. When an alternating-phase, bipartite field positioned at the middle of the receptive field was used as a stimulus, X-cells had a null position, whereas Y-cells showed a doubling of the response frequency. When drifting sine-wave gratings of low contrast were used as a stimulus, X-cells showed a periodic modulation of their discharge having the same mean value for different spatial frequencies, whereas Y-cells showed a large increase in the mean value of their discharges. 3. X-cells had opponent-color responses that received cone-specific signals, i.e., center and surround responses were mediated by input from spectrally different types of cone, whereas Y-cells had broad-band spectral responses receiving mixed-cone signals, i.e., center and surround responses were totally or partly mediated by input from the same type(s) of cone. In most Y-cells, the spatially opponent responses from the center and the surround were mediated by the same types of cone and were thus spectrally nonopponent; other Y-cells showed spectral opponency, since one of the types of cone mediating responses of one region of the receptive field (e.g., center) was absent in the responses of the other region (e.g., surround). 4. X- and Y-cells projected to the lateral geniculate body. Opponent-color X- and Y-cells did not project to the superior colliculus, whereas a fraction of spectrally non-opponent Y-cells projected to this structure. 5. X-cells tended to have longer conduction latencies, less transient responses to small stimuli, and a more central retinal distribution than Y-cells; these differences, however, represented tendencies and not invariant properties. 6. The results show that the X/Y dichotomy of ganglion cells is present in the retina of macaques and indicate that the degree of the linearity of spatial summation of incoming cone signals to the cells is related to the degree of cone specificity of spectral inputs to the receptive-field mechanisms.