Magnetically Suspended Centrifugal Blood Pump With a Radial Magnetic Driver

Abstract
A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the two gap sensor signals. The magnetic bearing was assembled into a centrifugal rotary blood pump (CRBP) driven with a radial, magnetic coupled driver. The impeller vane shape was designed based upon the computational fluid dynamic simulation. The diameter and height of the CRBP were 75 mm and 50 mm, respectively. The magnetic bearing system required the power of 1.0–1.4 W. The radial impeller movement was controlled to within ±10 μm. High stiffness in the noncontrolled axes, Z, Φ, and θ, was obtained by the passive magnetic forces. The pump flow of 5 L/min against 100 mm Hg head pressure was obtained at 1,800 rpm with the electrical to hydraulic efficiency being greater than 15%. The Normalized Index of Hemolysis (NIH) of the magnetic bearing CRBP was one fifth of the BioPump BP-80 and one half of the NIKKISO HPM-15 after 4 hours. The newly designed magnetic bearing with two degrees of freedom control in combination with optimized impeller vane was successful in achieving an excellent hemolytic performance in comparison with the clinical centrifugal blood pumps.